21,799 research outputs found

    Blind Normalization of Speech From Different Channels

    Full text link
    We show how to construct a channel-independent representation of speech that has propagated through a noisy reverberant channel. This is done by blindly rescaling the cepstral time series by a non-linear function, with the form of this scale function being determined by previously encountered cepstra from that channel. The rescaled form of the time series is an invariant property of it in the following sense: it is unaffected if the time series is transformed by any time-independent invertible distortion. Because a linear channel with stationary noise and impulse response transforms cepstra in this way, the new technique can be used to remove the channel dependence of a cepstral time series. In experiments, the method achieved greater channel-independence than cepstral mean normalization, and it was comparable to the combination of cepstral mean normalization and spectral subtraction, despite the fact that no measurements of channel noise or reverberations were required (unlike spectral subtraction).Comment: 25 pages, 7 figure

    Can Maxwell's equations be obtained from the continuity equation?

    Full text link
    We formulate an existence theorem that states that given localized scalar and vector time-dependent sources satisfying the continuity equation, there exist two retarded fields that satisfy a set of four field equations. If the theorem is applied to the usual electromagnetic charge and current densities, the retarded fields are identified with the electric and magnetic fields and the associated field equations with Maxwell's equations. This application of the theorem suggests that charge conservation can be considered to be the fundamental assumption underlying Maxwell's equations.Comment: 14 pages. See the comment: "O. D. Jefimenko, Causal equations for electric and magnetic fields and Maxwell's equations: comment on a paper by Heras [Am. J. Phys. 76, 101 (2008)].

    Using state space differential geometry for nonlinear blind source separation

    Full text link
    Given a time series of multicomponent measurements of an evolving stimulus, nonlinear blind source separation (BSS) seeks to find a "source" time series, comprised of statistically independent combinations of the measured components. In this paper, we seek a source time series with local velocity cross correlations that vanish everywhere in stimulus state space. However, in an earlier paper the local velocity correlation matrix was shown to constitute a metric on state space. Therefore, nonlinear BSS maps onto a problem of differential geometry: given the metric observed in the measurement coordinate system, find another coordinate system in which the metric is diagonal everywhere. We show how to determine if the observed data are separable in this way, and, if they are, we show how to construct the required transformation to the source coordinate system, which is essentially unique except for an unknown rotation that can be found by applying the methods of linear BSS. Thus, the proposed technique solves nonlinear BSS in many situations or, at least, reduces it to linear BSS, without the use of probabilistic, parametric, or iterative procedures. This paper also describes a generalization of this methodology that performs nonlinear independent subspace separation. In every case, the resulting decomposition of the observed data is an intrinsic property of the stimulus' evolution in the sense that it does not depend on the way the observer chooses to view it (e.g., the choice of the observing machine's sensors). In other words, the decomposition is a property of the evolution of the "real" stimulus that is "out there" broadcasting energy to the observer. The technique is illustrated with analytic and numerical examples.Comment: Contains 14 pages and 3 figures. For related papers, see http://www.geocities.com/dlevin2001/ . New version is identical to original version except for URL in the bylin

    Charge reversal of colloidal particles

    Full text link
    A theory is presented for the effective charge of colloidal particles in suspensions containing multivalent counterions. It is shown that if colloids are sufficiently strongly charged, the number of condensed multivalent counterion can exceed the bare colloidal charge leading to charge reversal. Charge renormalization in suspensions with multivalent counterions depends on a subtle interplay between the solvation energies of the multivalent counterions in the bulk and near the colloidal surface. We find that the effective charge is {\it not} a monotonically decreasing function of the multivalent salt concentration. Furthermore, contrary to the previous theories, it is found that except at very low concentrations, monovalent salt hinders the charge reversal. This conclusion is in agreement with the recent experiments and simulations

    Examining the Personal and Institutional Determinants of Research Productivity in Hospitality and Tourism Management

    Full text link
    The transition toward a post-capitalist knowledge-oriented economy has resulted in an increasingly competitive academic environment, where the success of faculty is dependent on their research productivity. This study examines the personal and institutional determinants of the quantity and quality of the research productivity of hospitality and tourism management faculty in US institutions. A survey of 98 faculty found that a different set of determinants impact the quantity and quality aspects of research productivity. Also, institutional determinants were found to play a larger role, indicating the need for administrators to strive for a culture that is supportive of and an infrastructure that is conducive to their faculty’s research success. The authors use the field of hospitality and tourism management as a case study to develop a holistic and cohesive framework for knowledge worker productivity that can guide the evaluation, hiring, and development of researchers

    Scale Dependence of the Retarded van der Waals Potential

    Get PDF
    We study the ground state energy for a system of two hydrogen atoms coupled to the quantized Maxwell field in the limit α0\alpha \to 0 together with the relative distance between the atoms increasing as αγR\alpha^{-\gamma} R, γ>0\gamma > 0. In particular we determine explicitly the crossover function from the R6R^{-6} van der Waals potential to the R7R^{-7} retarded van der Waals potential, which takes place at scale α2R\alpha^{-2} R.Comment: 19 page

    Polarizations of J/\psi and \psi' in hadroproduction at Tevatron in the k_t factorization approach

    Full text link
    We present a calculation for the polarizations of J/ψJ/\psi and ψ\psi' produced in the hadron collisions at the Fermilab Tevatron. Various color octet channels including 1S0(8){}^1S_0^{(8)}, 3PJ(8){}^3P_J^{(8)}, and 3S1(8){}^3S_1^{(8)} as well as contributions from χcJ\chi_{cJ} decays are considered in the ktk_t factorization approach. We find that in a rather wide range of the transverse momenta of J/ψJ/\psi and ψ\psi', the production rates could be dominated by the 1S0(8){}^1S_0^{(8)} channel, and the predicted polarizations from the 1S0(8){}^1S_0^{(8)} channel and χcJ\chi_{cJ} feeddown contributions are roughly compatible with the preliminary CDF data. This might provide a possible release from the conflict between the NRQCD collinear parton model calculations and the CDF data.Comment: 12 pages, 4 PS files, final version for publicatio

    A Neutral Polyampholyte in an ionic solution

    Full text link
    The behavior of a neutral polyampholyte (PAPA) chain with NN monomers, in an ionic solution, is analyzed in the framework of the full Debye-Hu¨\ddot u ckel-Bjerrum-Flory (DHBjF)(DHBjF) theory. A PAPA chain, that in addition to the neutral monomers, also contains an equal number of positively and negatively charged monomers, is dissolved in an ionic solution. For \underline{high} concentrations of salt and at high temperatures, the PAPA exists in an extended state. As the temperature is decreased, the electrostatic energy becomes more relevant and at a T=TθT=T_{\theta} the system collapses into a dilute globular state, or microelectrolyte. This state contains a concentration of salt higher than the surrounding medium. As the temperature is decreased even further, association between the monomers of the polymer and the ions of the salt becomes relevant and there is a crossover from this globular state to a low temperature extended state. For \underline{low} densities of salt, the system is collapsed for almost all temperatures and exhibits a first-order phase transition to an extended state at an unphysical low temperature.Comment: 10 pages, Revtex with epsf, 9 Postscript figures. Submitted to PR
    corecore